Faglig Innhold
Emnet er en fordypning i og videreføring av analysen fra videregående skole. Det legger et grunnlag for videre studier i matematikk og matematikk-krevende realfag samtidig som innholdet har rike anvendelser. Gjennom eksempler, anvendelser og teoretiske resultater gir emnet et første innblikk i reell analyse og dens betydning. Emnet behandler grunnleggende egenskaper ved reelle tall og reelle funksjoner av en variabel, grenseverdier, kontinuitet, differensial- og integralregning. Det legges vekt på stringens.
Læringsmål
1. Kunnskap. Studenten kjenner sentrale begreper i reell analyse, inkludert konvergens av følger og funksjoner; viktige egenskaper ved tallinjen og kontinuerlige, deriverbare og integrerbare funksjoner; linearisering; analysens fundamentalsetning. Videre kjenner studenten numeriske metoder for integrasjon og ligningsløsning. Studenten har mer detaljert kunnskap om egenskapene til sentrale funksjoner, som polynomer, eksponentialfunksjoner, trigonometriske funksjoner og deres inverser. 2. Ferdigheter. Studenten kan anvende integrasjons- og derivasjonsteknikker i arbeid med matematiske modeller, til å utlede enkle matematiske resultater og til å analysere funksjoner. Studenten kan sette opp og analysere enkle matematiske modeller som krever enkel optimering. Studenten er i stand til å velge og gjennomføre egnet numerisk metode for problemer som involverer integrasjon og ligningsløsning, samt vurdere nøyaktigheten av den valgte metoden. Videre kan studenten lese og utføre stringent matematisk argumentasjon knyttet til emnets innhold, inkludert argumentasjon som bruker matematisk induksjon.